
P V - W A V E  7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

D a t a b a s e  C o n n e c t i o n  U s e r ’ s  G u i d e





Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road 
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho 
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN 
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc.  An unpublished work.  All rights reserved.  Printed in the USA. 

Information contained in this documentation is subject to change without notice. 

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of  Visual Numerics, Inc. 
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts 
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems, 
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510 
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin 
Enterprises; XWD — X Consortium.  Other product names and companies mentioned herein may be the trademarks of their respective 
owners.

IMPORTANT NOTICE:  Use of this document is subject to the terms and conditions of a Visual Numerics Software License 
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability.  If you do not accept the terms of the 
license agreement, you may not use this documentation and should promptly return the product for a full refund.  Do not make illegal 
copies of this documentation.  No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form 
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law. 



Table of Contents  i

Table of Contents
 Intended Audience iii

 Typographical Conventions iv

Technical Support iv

FAX and E-mail Inquiries v
Electronic Services vi

Chapter 1: Importing from a Database 1
 Introduction 1

 Use the SQL Syntax You Already Know 1
Import Any Data Type 2
 Database Access is Convenient 2
 What You Need to Know to Use these Functions 2

 Connecting to a Database 2

Database Connection Example 2

Querying the Database 3

Example 1: Importing an Entire Table 4
Example 2: Importing and Sorting Part of a Table 5
Example 3: Importing and Sorting Table Summary Data 6
Example 4: Importing Data from Multiple Tables 8
Example 5: Importing NULL Values 10
Connecting to a Database from a PV-WAVE Routine 13

Controlling Rowset Size 14

Chapter 2: Reference 15
 Summary of Database Routines 15

DB_CONNECT Function 16

Usage 16
Input Parameters 16
Returned Value 16
Keywords 16
Discussion 16



ii PV-WAVE:Database Connection User’s Guide

Example 1 17
Example 2 17
Example 3 17
Example 4 18
See Also 18

DB_GET_BINARY Function 19

Usage 19
Input Parameters 19
Returned Value 19
Keywords 19
Discussion 19

DB_SQL Function 20

Usage 20
Input Parameters 20
Returned Value 20
Keywords 20
Discussion 20
Example 1 21
Example 2 21
Example 3 21
Example 4 21
Example 5 22
See Also 22

DB_DISCONNECT Procedure 23

Usage 23
Input Parameters 23
Keywords 23
Discussion 23
Example 23
See Also 23

NULL_PROCESSOR Function 24

Usage 24
Input Parameters 24
Keywords 24
Discussion 24



iii

PREFACE

Preface
This guide explains how to use the PV-WAVE:Database Connection 5.1 functions.
These functions let you query a database from within PV-WAVE and import the
query results into a PV-WAVE table. This imported data can then be manipulated
and displayed using other PV-WAVE functions. This manual contains the follow-
ing parts:

• Preface — Describes the contents of this manual, describes the intended audi-
ence, lists the typographical conventions used, and explains how to obtain
customer support.

• Chapter 1: Importing from a Database — Explains how to use the database
connection functions to subset and import data into PV-WAVE from an exter-
nal database.

• Chapter 2: Reference — An alphabetically arranged reference describing
each of the database functions.

Intended Audience
The PV-WAVE:Database Connection functions are easy to use if you are familiar
with the target Database Management System (such as Oracle or SYBASE) and
Structured Query Language (SQL). Because imported data is placed in a
PV-WAVE table, you need to be familiar with the PV-WAVE table functions.
These functions include BUILD_TABLE, QUERY_TABLE, and UNIQUE. They
are described in the PV-WAVE Reference.



iv  Preface PV-WAVE:Database Connection User’s Guide

Typographical Conventions
The following typographical conventions are used in this guide:

• PV-WAVE code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• PV-WAVE commands are not case sensitive. In this manual variables are
shown in lowercase italics (myvar), function and procedure names are shown
in all capitals (XYOUTS), keywords are shown in mixed case italic (XTitle),
and system variables are shown in regular mixed case type (!Version).

• Variable names that are preceded by an exclamation point (!) denote system
variables.

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700



 v

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748



vi  Preface PV-WAVE:Database Connection User’s Guide

or by sending E-mail to:

Electronic Services

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com



1

CHAPTER

1

Importing from a Database

Introduction
PV-WAVE’s powerful database connection functions let you import data from an
external database into PV-WAVE Advantage and CL.

Once the data is imported, you can use PV-WAVE to analyze, manipulate, and
visualize the data. The database connection functions include:

• DB_CONNECT — Connect to an external database.

• DB_GET_BINARY — Connect to an external database.

• DB_SQL — Query the database with SQL SELECT statements and import the
results into a PV-WAVE table.

• DB_DISCONNECT — Disconnect from the database.

• NULL_PROCESSOR — Facilitates the use of the Null_Info keyword for the
DB_SQL function by extracting the list of rows containing missing for one or
more columns.

NOTE Currently, the Oracle and SYBASE databases are supported. Additional
databases may be supported in the future.

Use the SQL Syntax You Already Know

You can query your database from PV-WAVE using the standard SQL statements
of the Database Management System (DBMS) that you are accessing. You do not
need to learn new SQL syntax.



2  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

Import Any Data Type

You can import any data type that is supported by PV-WAVE. Date data is auto-
matically converted to PV-WAVE’s date/time format.

Database Access is Convenient

If you can access the database from the workstation on which PV-WAVE is run-
ning, you can connect to the database from within PV-WAVE.

If you have trouble connecting to a database from PV-WAVE, contact your data-
base administrator.

What You Need to Know to Use these Functions

The database connection functions are easy to use if you are familiar with the target
DBMS and Structured Query Language. Because imported data is placed in a
PV-WAVE table structure, you need to be familiar with the functions used to
manipulate tables in PV-WAVE. These functions are described in the PV-WAVE
User’s Guide.

Connecting to a Database
Use the DB_CONNECT function to establish a connection between a database and
PV-WAVE. DB_CONNECT takes two string parameters: the name of the DBMS
vendor (ORACLE or SYBASE), and the connect_string (a string containing login
commands) for the desired database. The return value of DB_CONNECT is an
identifier that is used by PV-WAVE to distinguish between database connections.

result = DB_CONNECT('dbms_vendor', 'connect_string')

NOTE PV-WAVE only supports one active DBMS connection per DBMS vendor.
Thus, a maximum of one Oracle and one SYBASE connection can be open at a
given time. To extract data from more than one Oracle or SYBASE database, the
user must disconnect from the first database before connecting to the second one.

Database Connection Example

Assume that you would like to access the data in an Oracle database. To import the
data into PV-WAVE, you must first establish a connection using the



Querying the Database  3

DB_CONNECT function. For example, to connect as user “scott” (password
“tiger”), you could enter the following command:

oracle_id = DB_CONNECT(”ORACLE”, ”scott/tiger”)

This command attempts to connect to the default Oracle database for the current
session. The default database is determined by the environment variable
ORACLE_SID. If you want to connect to a database other than the default, you can
use the following command:

oracle_id = DB_CONNECT(”ORACLE”, ”scott/tiger@another_db”)

In this case, another_db is the Oracle name of a database, as defined in the
TNSNAMES.ORA file on your system.

On Sybase systems, the following syntax is supported for DB_CONNECT:

sybase_id = DB_CONNECT(”SYBASE”, ”scott/tiger@server:another_db”)

In this case, server is the name of the DBMS server, and another_db is the
name of a database maintained by that server. The database name is the same as the
one which is specified for the Sybase SQL command USE.

TIP Once you have imported your data into PV-WAVE, it is not necessary to
maintain an open database connection. We recommend closing the connection as
soon as possible, to minimize the impact on the DBMS server.

For more information on DB_CONNECT, see Chapter 2, Reference.

Querying the Database
After a database connection is established, you can use the DB_SQL function to
issue any single-line SQL command to the DMBS. DB_SQL takes two parameters:
the DBMS ID (returned by DB_CONNECT) and a string containing the SQL
command. The syntax is as follows:

result = DB_SQL(dbms_id, "sql_command")

If sql_command returns a result set (as in a SELECT statement), result contains the
result set, placed in a PV-WAVE table variable. In the cases where sql_command
does not return a result set (as in INSERT, UPDATE, or DELETE statements),
result contains a long value that indicates the success (result=0) or failure
(result=–1) status of sql_command. The variable result can be manipulated and/or
displayed by any PV-WAVE routine. This includes creating PV-WAVE tables
which are subsets of the result set (with QUERY_TABLE, for example).



4  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

NOTE PV-WAVE single-line SQL command support does not include the ability
to execute Block SQL statements. Execution of stored procedures, however, is sup-
ported, so we recommend that users who wish to perform more complicated
DBMS operations from PV-WAVE enclose them in a DBMS stored procedure. For
more info on creating stored procedures, contact your database administrator.

Example 1: Importing an Entire Table

The DB_SQL command shown below imports all of the data from the table called
wave.wave_prop_trx in the Oracle database mydbserv. The table contains
eight columns and 10000 rows.

oracle_id = DB_CONNECT( ”ORACLE”, ”scott/tiger@mydbserv”)

   ; Connect to the Oracle database ’mydbserv’,
   ; with username ’scott’ and password ’tiger’

table = DB_SQL( oracle_id, ”SELECT * FROM wave.wave_prop_trx”)

info, table

TABLE           STRUCT    = -> TABLE_1855432390284244950984412
Array(10000)

info, table, /Structure

** Structure TABLE_1855432390284244950984412, 8 tags, 72 length:

   TRX_ID       LONG                 0

   PROP_TYPE    STRING    ’OTHER               ’

   PROP_ADDRESS STRING    ’’

   PROP_POST_CD STRING    ’’

   PROP_XGRID   DOUBLE        0.0075200000

   PROP_YGRID   DOUBLE           1.6357100

   TRX_AMT      DOUBLE           116383.00

   TRX_DATE     STRUCT    -> !DT Array(1)

As you can see, the data has been imported into an array of PV-WAVE structures.
The tag names in the structure correspond to the column names in the database
table.



Querying the Database  5

Example 2: Importing and Sorting Part of a Table

In this example, we wish to import and sort a subset of the data in
wave.wave_prop_trx. The following set of commands limits both the num-
ber of rows and columns returned to PV-WAVE.

oracle_id = DB_CONNECT( ”ORACLE”, ”scott/tiger@mydbserv”)

; Create the SQL command as a PV-WAVE variable
   ; First, create the column list

sql_command = ”SELECT trx_id, prop_type, ” + $

                  ”trx_amt, trx_date ”     + $

                  ”FROM wave.wave_prop_trx ”

   ; Next, add a WHERE clause to limit the number of rows
   ; This limits the subset to all dates between June 6, 1999
   ; and June 6, 2001

sql_command = sql_command + $

   ”WHERE trx_date <= TO_DATE(’2001/06/01’, ’YYYY/MM/DD’) ” + $

   ”  AND trx_date >  TO_DATE(’1999/06/01’, ’YYYY/MM/DD’) ”

   ; Finally add an ORDER BY clause to sort the dates in order

sql_command = sql_command + ”ORDER BY trx_date”

sub_table = DB_SQL( oracle_id, sql_command)

INFO, sub_table

SUB_TABLE       STRUCT    = -> TABLE_2080423439256551873139501
Array(947)

INFO, sub_table, /Structure

** Structure TABLE_2080423439256551873139501, 4 tags, 48 length:

   TRX_ID    LONG              7514

   PROP_TYPE STRING    ’OTHER               ’

   TRX_AMT   DOUBLE           206871.00

   TRX_DATE  STRUCT    -> !DT Array(1)

DT_TO_STR, sub_table(0).trx_date, tmp_date, tmp_time, Date_Fmt=5,
Time_Fmt=-1



6  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

PRINT, tmp_date + ” ” + tmp_time

1999/06/01 22:20:37.000

TIP Very long SQL statements may not fit in a single PV-WAVE command string.
For very long SQL statements, we recommend that you “build” the command in a
PV-WAVE string variable, which can be any length.

Example 3: Importing and Sorting Table Summary Data

The DB_SQL command shown below imports averages by property type from
table wave.wave_prop_trx in the Oracle database mydb.

oracle_id = DB_CONNECT( ’ORACLE’, ’scott/tiger@mydbserv’)

amt_by_type = DB_SQL( oracle_id, ’SELECT prop_type, ’ + $

                           ’AVG(trx_amt) my_avg_amt, ’ + $

                           ’SUM(trx_amt) my_total_amt ’ + $

                           ’FROM wave.wave_prop_trx ’ + $

                           ’GROUP by prop_type ’ + $

                           ’ORDER by prop_type’)

   ; Select the average transaction amount
   ; for each property type, ordered by property type

INFO, amt_by_type

AMT_BY_TYPE     STRUCT    = -> TABLE_1990902712472184093171925
Array(9)

INFO, amt_by_type, /Structure

** Structure TABLE_1990902712472184093171925, 3 tags, 24 length:

   PROP_TYPE    STRING    ’1BR_CONDO           ’

   MY_AVG_AMT   DOUBLE           80501.404

   MY_TOTAL_AMT DOUBLE           87666029.



Querying the Database  7

NOTE When using expressions or aggregate functions in an SQL SELECT col-
umn list, we recommend that you use a column alias. This will help ensure that the
tag name is valid in the PV-WAVE table variable.

This same data could also be generated with PV-WAVE functions:

table = DB_SQL( oracle_id, ’SELECT * from wave.wave_prop_trx’)

amt_by_type_2 = QUERY_TABLE( table, ’prop_type, ’ + $

                               ’AVG(trx_amt) my_avg_amt, ’ + $

                               ’SUM(trx_amt) my_total_amt ’ + $

                               ’group by prop_type’)

amt_by_type_2 = ORDER_BY( amt_by_type_2, ’prop_type’)

INFO, amt_by_type_2

AMT_BY_TYPE_2   STRUCT    = -> TABLE_3150083162320518139151666
Array(9)

INFO, amt_by_type_2, /Structure

** Structure TABLE_3150083162320518139151666, 3 tags, 24 length:

   PROP_TYPE    STRING    ’1BR_CONDO           ’

   MY_AVG_AMT   DOUBLE           80501.404

   MY_TOTAL_AMT DOUBLE           87666029.

TIP PV-WAVE supports some searching, sorting, and aggregate functions inter-
nally (with the WHERE and QUERY_TABLE functions, for example). In many
cases, PV-WAVE searching and sorting algorithms may be faster than performing
them on the DBMS server (with DB_SQL). We recommend that you try importing
data into PV-WAVE with a minimum of sorting, and use PV-WAVE functions to
sort, group, and search the data.



8  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

Example 4: Importing Data from Multiple Tables

This example combines data from three different tables into one PV-WAVE data
set. The data is from air quality measurements from a number of fixed-location
monitoring stations. One table contains the monitoring station location information
(wave.wave_ts_location), one contains the dataset information
(wave.wave_ts_dataset), and one contains the individual measurement data
(wave.wave_ts_datapoint). Notice that the tag names in the PV-WAVE
table variable are the same as the column alias values given in the SELECT list.

TIP We suggest that you use explicit SELECT lists (no wildcards) and column
aliases when importing data through a multi-table join.

oracle_id = DB_CONNECT( ”ORACLE”, ”scott/tiger@mydbserv”)

; Create the SQL command as a PV-WAVE variable
   ; This query combines data from 3 normalized tables

sql_command = ”SELECT dpnt.air_temp  air_temp, ” + $

       ”dpnt.humidity    humidity, ” + $

       ”dpnt.atm_press   atm_press, ” + $

       ”dpnt.o3_ppm      o3_ppm, ” + $

       ”dpnt.co_ppm      co_ppm, ” + $

       ”dpnt.no2_ppm     no2_ppm, ” + $

       ”dpnt.pm10_ug_m3  pm10_ug_m3, ” + $

       ”dset.dataset_id  dataset_id, ” + $

       ”dset.start_date  ref_date, ” + $

       ”dloc.grid_x      grid_x, ” + $

       ”dloc.grid_y      grid_y  ” + $

”FROM wave.wave_ts_datapoint dpnt, ” + $

     ”wave.wave_ts_dataset   dset, ” + $

     ”wave.wave_ts_location  dloc ”

   ; Join and data limits
   ; Only plot data for grid ID = 1
   ; And for datasets which started during 1997 through 2002

sql_command = sql_command + $

”WHERE dset.dataset_id = dpnt.dataset_id ” + $

  ”AND dset.start_date >= TO_DATE(’19970101’, ’YYYYMMDD’) ” + $



Querying the Database  9

  ”AND dset.start_date < TO_DATE(’20030101’, ’YYYYMMDD’) ” + $

  ”AND dloc.loc_id = dpnt.loc_id ” + $

  ”AND dloc.start_date <= dset.start_date ” + $

  ”AND (   dloc.end_date > dset.start_date ” + $

  ”     OR dloc.end_date IS NULL)  ” + $

  ”AND dloc.grid_id = 1 ”

   ; Perform the query

table = DB_SQL( oracle_id, sql_command)

INFO, table

TABLE           STRUCT    = -> TABLE_2808314677754116534184991
Array(3400)

INFO, table, /Structure

** Structure TABLE_2808314677754116534184991, 11 tags, 72 length:

   AIR_TEMP   FLOAT           29.2000

   HUMIDITY   FLOAT           26.7000

   ATM_PRESS  FLOAT           753.520

   O3_PPM     FLOAT         0.0434300

   CO_PPM     FLOAT           3.61000

   NO2_PPM    FLOAT         0.0347400

   PM10_UG_M3 FLOAT           21.1800

   DATASET_ID LONG                 6

   REF_DATE   STRUCT    -> !DT Array(1)

   GRID_X     FLOAT          -1.46000

   GRID_Y     FLOAT           6.15000

NOTE PV-WAVE only supports table JOINs during data import. JOINs are not
allowed on PV-WAVE table data after import.



10  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

Example 5: Importing NULL Values
PV-WAVE does not support NULL values in table variables. If PV-WAVE encoun-
ters a NULL value in a DBMS result set, it will replace it with zero (for numeric
types), a NULL string (for strings), or an empty structure (for date/time values). In
the following example, we use the table wave.wave_conv_test_nulls,
which contains the following values:

TEST_STRING        TEST_DATE         TEST_NUM

-----------        ---------         --------

<NULL>             04-JUL-1776       3.14

<NULL_STRING>      <NULL>            0

Not null!          04-JUL-1776       <NULL>

In this table, <NULL> represents the database NULL value, and
<NULL_STRING> is the zero-length string (‘’). The following example indicates
how this table could cause problems in PV-WAVE:

oracle_id = DB_CONNECT( ”ORACLE”, ”scott/tiger@mydbserv”)

table = DB_SQL(oracle_id, ”SELECT * FROM wave.wave_conv_test_nulls”)

INFO, table

TABLE STRUCT = -> TABLE_2251731550291596501887914 Array(3)

INFO, table, /Structure

** Structure TABLE_2251731550291596501887914, 3 tags, 48 length:

   TEST_STRING STRING    ’’

   TEST_DATE   STRUCT    -> !DT Array(1)

   TEST_NUM    DOUBLE           3.1400000

INFO, table(1), /Structure

** Structure TABLE_2251731550291596501887914, 3 tags, 48 length:

   TEST_STRING STRING    ’’

   TEST_DATE   STRUCT    -> !DT Array(1)

   TEST_NUM    DOUBLE           0.0000000

INFO, table(2), /Structure

** Structure TABLE_2251731550291596501887914, 3 tags, 48 length:

   TEST_STRING STRING    ’Not null!                     ’



Querying the Database  11

   TEST_DATE   STRUCT    -> !DT Array(1)

   TEST_NUM    DOUBLE           0.0000000

In row 0 and row 1, the column test_string has the same value in PV-WAVE.
However, in the database, the row 0 value is NULL and the row 1 value is the
NULL string ‘’. Similarly, the values of test_num are the same in rows 1 and 2,
even though they are different in the database.

If NULL-valued data is significant, one approach is to replace the NULL with a
substitute value in the SELECT list. The following example indicates how this can
be accomplished:

table_2 = DB_SQL(oracle_id, $

             ”SELECT NVL(test_string, ’_NULL_’) test_string, ” + $

”NVL(test_date, TO_DATE(’29991231’, ’YYYYMMDD’))
test_date, ” + $

                    ”NVL(test_num,    -999999.98) test_num ” + $

             ”FROM wave.wave_conv_test_nulls”)

INFO, table_2, /Structure

** Structure TABLE_3088719732127463461882630, 3 tags, 48 length:

   TEST_STRING STRING    ’_NULL_                        ’

   TEST_DATE   STRUCT    -> !DT Array(1)

   TEST_NUM    DOUBLE           3.1400000

INFO, table_2(1), /Structure

** Structure TABLE_3088719732127463461882630, 3 tags, 48 length:

   TEST_STRING STRING    ’’

   TEST_DATE   STRUCT    -> !DT Array(1)

   TEST_NUM    DOUBLE           0.0000000

INFO, table_2(2), /Structure

** Structure TABLE_3088719732127463461882630, 3 tags, 48 length:

   TEST_STRING STRING    ’Not null!                     ’

   TEST_DATE   STRUCT    -> !DT Array(1)



12  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

   TEST_NUM    DOUBLE          -999999.98

Another approach is the concept of indicator variables. An indicator variable has
a value of –1 if the associated variable is NULL, and a value of zero otherwise. For
an Oracle database, the following example code can be used to generate indicator
variables in PV-WAVE:

table_3 = DB_SQL(oracle_id, $

             ”SELECT test_string, ” + $

”DECODE(test_string, NULL, -1, 0) test_string_i, ” + $

                 ”test_date, ” + $

”DECODE(test_date, NULL, -1, 0) test_date_i, ” + $

                 ”test_num, ” + $

                 ”DECODE(test_num, NULL, -1, 0) test_num_i ” + $

             ”FROM wave.wave_conv_test_nulls”)

INFO, table_3, /Structure

** Structure TABLE_2739531713696126301209217, 6 tags, 72 length:

   TEST_STRING   STRING    ’’

   TEST_STRING_I DOUBLE          -1.0000000

   TEST_DATE     STRUCT    -> !DT Array(1)

   TEST_DATE_I   DOUBLE           0.0000000

   TEST_NUM      DOUBLE           3.1400000

   TEST_NUM_I    DOUBLE           0.0000000

INFO, table_3(1), /Structure

** Structure TABLE_2739531713696126301209217, 6 tags, 72 length:

   TEST_STRING   STRING    ’’

   TEST_STRING_I DOUBLE           0.0000000

   TEST_DATE     STRUCT    -> !DT Array(1)

   TEST_DATE_I   DOUBLE          -1.0000000

   TEST_NUM      DOUBLE           0.0000000

   TEST_NUM_I    DOUBLE           0.0000000



Querying the Database  13

INFO, table_3(2), /Structure

** Structure TABLE_2739531713696126301209217, 6 tags, 72 length:

   TEST_STRING   STRING    ’Not null!                     ’

   TEST_STRING_I DOUBLE           0.0000000

   TEST_DATE     STRUCT    -> !DT Array(1)

   TEST_DATE_I   DOUBLE           0.0000000

   TEST_NUM      DOUBLE           0.0000000

   TEST_NUM_I    DOUBLE          -1.0000000

Once the indicator variables have been created, it is a simple matter to create indi-
ces (with the WHERE function) which can be used to isolate or exclude the NULL
values.

Connecting to a Database from a PV-WAVE Routine

You can place database connection functions in a PV-WAVE routine. Use the
ON_IOERROR function to trap errors that occur while connecting, importing, and
disconnecting from the DBMS. ON_IOERROR is described in the PV-WAVE Ref-
erence. The following example demonstrates this technique:

FUNCTION Read_Dept

;Read the employee name and department number

;from the database and return a new table.

ON_IOERROR, Bad

;Connect To DBMS

;===============

PRINT, 'DB_CONNECT:'

oracle_id=DB_CONNECT('ORACLE', 'scott/tiger')

PRINT, 'Ok'

;Import data from the database.

;=============================

PRINT, 'DB_SQL:'

table = DB_SQL(oracle_id, 'SELECT ename,' +$
'deptno from emp')

PRINT, 'Ok'

;Disconnect from the DBMS.

;========================

PRINT, 'DB_DISCONNECT: '

DB_DISCONNECT, oracle_id

PRINT, 'Ok'

PRINT, 'End'



14  Chapter 1: Importing from a Database PV-WAVE:Database Connection User’s Guide

RETURN, table

Bad:

PRINT, 'Bad'

END

Controlling Rowset Size
You can control the rowset size for database queries. The rowset size is defined as
the number of rows that the DBMS returns to the client per network transmission.

The ability to change the rowset size allows you to tune PV-WAVE:Database Con-
nection to optimize the performance of each query.

Small rowsets:

• reduce the amount of temporary memory needed to import a large dataset gen-
erated by a query.

• reduce the number of blocked processes on networks with heavy traffic.

• increase the time required to complete a query.

Large rowsets:

• reduce the time required to complete a query.

• increase the amount of temporary memory required.

• increase the number of blocked processes.

To change the rowset size, modify the PV-WAVE system variable
!Dbms_Rowset_Size. For example:

!Dbms_Rowset_Size = 300

The default value of !Dbms_Rowset_Size is 500.

All PV-WAVE:Database Connection routines check this variable before accepting
data from the DBMS. During the same connection, the rowset size can be changed
between one query and another. Changing the rowset size does not affect the total
number of rows returned, just the number of network transactions which are
required to return all of the rows produced by the query.



15

CHAPTER

2

Reference
This chapter describes each of the PV-WAVE:Database Connection routines.

Summary of Database Routines
The syntax for these routines is summarized below:

DB_CONNECT Function
dbms_id = DB_CONNECT( 'dbms', 'login' )

Connects PV-WAVE to a database.

DB_GET_BINARY Function
list_var = DB_GET_BINARY(handle, sql_query)

Returns binary large objects (BLOBS) from a DBMS (database management system)
server.

DB_SQL Function
table = DB_SQL(dbms_id, 'sql_stmt' )

Queries the database currently connected to PV-WAVE.

DB_DISCONNECT Procedure
DB_DISCONNECT, dbms_id

Disconnects PV-WAVE from an external database.

NULL_PROCESSOR Function

table =
NULL_PROCESSOR(null_info_object,[‘col1’,’col2’,…,’coln’],Comp=comp)

Facilitates the use of the Null_Info keyword for the DB_SQL function by extracting the
list of rows containing missing for one or more columns.



16  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

DB_CONNECT Function
Connects PV-WAVE to a database.

Usage

dbms_id = DB_CONNECT( 'dbms', 'login' )

Input Parameters

dbms — A string specifying the database management system (DBMS).

login — A string containing the commands used to log in to the database. The
string can contain the following elements:

• user — The username of a user authorized to connect to the database.

• password — The user’s database password.

• node_name — The name of the workstation on which the DBMS is running.
By default, this is the workstation you are logged onto. For SYBASE users, this
is equivalent to the server name.

• db_name — The name of the database to connect to within the DBMS. By
default this is the default database defined for your DBMS. For SYBASE users,
this is equivalent to the database context.

See the Discussion section below for more information on the login parameter.

Returned Value

dbms_id — An ID number (handle) representing the DBMS.

Keywords

None.

Discussion

The following database management systems are supported:

• Oracle

• SYBASE



DB_CONNECT Function  17

NOTE The syntax of the login string may vary slightly depending on the type of
DBMS you are using. See your DBMS documentation or database administrator
for additional information on the login string syntax.

To connect to a SYBASE database, the SYBASE environment variable must be set
properly. See your database administrator if you have any questions about setting
this environment variable.

TIP If you have trouble connecting to an Oracle database, it may be that environ-
ment variables are improperly set. If you cannot establish a connection to Oracle,
first be sure that you can use sqlplus to access the database you want to connect
to from the workstation on which PV-WAVE is running. If this works you may
have to set the ORACLE_HOME and ORACLE_SID environment variables. See
your database administrator for information on setting these environment variables
properly.

Example 1

This example shows the default connection, where the DBMS is ORACLE, and the
username and password are given in the login string. In this case, it is assumed that
the database is running on the workstation the user is currently logged onto, and the
database the user wants to access is set up as the default database for the DBMS.

oracle_id = DB_CONNECT(’ORACLE’,’scott/tiger’)

Example 2

This example shows a login string that specifies:

• the workstation (dbnode) running the DBMS and

• the database (mydb) to connect to within the DBMS.

oracle_id = DB_CONNECT(’ORACLE’, ’scott/tiger@mydb’)

Example 3

This example shows a login string used to connect to a SYBASE database. The
syntax of the login string for a SYBASE connection is:

user[/password][@server][:database]

Only the username parameter is required. If the server and/or dbase param-
eters are not specified, the default server and database are used. The
interfaces file in the $SYBASE directory contains a list of available servers.



18  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

The following login string specifies:

• the database server (SYBASE) and

• the database context (pubs2)

sybase_id = DB_CONNECT(’SYBASE’, ’scott/tiger@SYBASE:pubs2’)

Example 4

This example connects PV-WAVE to a SYBASE database. In this example, the
server parameter is not specified because the default server is being used:

sybase_id = DB_CONNECT(’SYBASE’ ’scott/tiger@:pubs2’)

See Also

DB_SQL, DB_DISCONNECT

See the following related functions in the PV-WAVE Reference:

BUILD_TABLE, GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQUE



DB_GET_BINARY Function  19

DB_GET_BINARY Function
Returns binary large objects (BLOBS) from a DBMS (database management
system) server.

Usage

list_var = DB_GET_BINARY(handle, sql_query)

Input Parameters

handle — DBMS connection handle (returned by DB_CONNECT).

sql_query — A string containing an SQL statement to execute on the DBMS
server. It must be a query (SELECT) statement.

Returned Value

list_var — A PV-WAVE LIST variable, one for each row in the query. Each
element in the LIST is a PV-WAVE array of type BYTE.

Keywords

None.

Discussion

Since binary large objects (BLOBS) are transmitted from most DBMS systems in
a different way from other data types, using DB_SQL to handle BLOBS would
compromise performance.

For queries that return more than one row, specify the order of the rows with the
ORDER BY clause in the sql_query.

NOTE One column will cause an error.

CAUTION The value of sql_query is subject to the following restrictions:

❑ It must be a query. UPDATE, INSERT, and/or DELETE will cause an error.

❑ It must only return one column. Queries that return more than one column will
cause an error.



20  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

DB_SQL Function
Queries the database currently connected to PV-WAVE.

Usage

table = DB_SQL(dbms_id, 'sql_stmt' )

Input Parameters

dbms_id — The DBMS ID (handle) that was returned by the DB_CONNECT
function.

sql_stmt — A string containing an SQL statement used to retrieve data from the
database. The SQL statement must be a SELECT statement.

Returned Value

table — A PV-WAVE table.

Keywords

Null_Info — Returns an associative array containing information on nulls in the
database query result.

Discussion

This function returns a PV-WAVE table containing the requested data from the
external database. You can then manipulate and visualize the imported data using
any PV-WAVE functions.

All supported data types from the database can be imported into PV-WAVE
variables.

Date/Time data is imported directly from the database into PV-WAVE date/time
format.

PV-WAVE does not support database NULL values. NULL values are converted
to zeros for numeric types, and NULL strings for type string.

You cannot retrieve image data from a SYBASE database.

The maximum length of a SYBASE data cell that can be imported into PV-WAVE
is 1024 bytes.



DB_SQL Function  21

CAUTION SYBASE Users — If you import a cell containing an undefined value,
PV-WAVE will crash. Some SYBASE queries, especially ones using the
compute by function, may produce cells containing undefined values. Usually,
these undefined cells appear as blank spaces used to format the resulting table.
Every data cell that you import from a SYBASE database must contain a meaning-
ful value: e.g., an actual or NULL value.

For detailed information on working with tables in PV-WAVE, see the PV-WAVE
User’s Guide.

Example 1

This example imports all of the data from the emp table in the ORACLE database
mydb.

oracle_id = DB_CONNECT(’ORACLE’, ’scott/tiger@Tmydb’)

emp = DB_SQL(oracle_id, ’SELECT * from emp’)

Example 2

This example imports the name, job, and salary of the managers whose salary is
greater than $2800.

oracle_id = DB_CONNECT(’ORACLE’, ’scott/tiger@mydb’)

emp = DB_SQL(oracle_id, "SELECT ename, job,"+$
"sal from emp where job = ’MANAGER’ and "+$
"SAL > 2800")

Example 3

This example imports the names and salaries of employees whose salary is between
$1200 and $1400.

oracle_id = DB_CONNECT(’ORACLE’, ’scott/tiger@mydb’)

emp = DB_SQL(oracle_id, ’SELECT ename, sal’+$
’from emp where sal between 1200 and 1400’)

Example 4

This example imports the names of employees and their commissions whenever the
commission is not a NULL value.

oracle_id = DB_CONNECT(’ORACLE’’scott/tiger@mydb’)

table=DB_SQL(oracle_id, ’SELECT ename’ +$
’from emp where comm is not NULL’)



22  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

Example 5

This example uses the Null_Info keyword.

table=db_sql(db_connect('oracle', 'scott/tiger'), 'select * from
blanktest', null_info=foo)

This returns the result ‘table’ from your query and the null info object associative
array ‘foo’. Foo contains three elements:

• N_ROWS = the number of rows returned in the query

• N_COLS = the number of columns or fields returned

• MISSING_DATA = the null info object associative array

The MISSING_DATA associative array contains the field name tags, each of which
has the associated array listing the rows with missing data for the tag.

For more information on the null info object and to process and extract the null
information array use the NULL_PROCESSOR function.

See Also

DB_CONNECT, DB_DISCONNECT, NULL_PROCESSOR

See the following related functions in the PV-WAVE Reference:

BUILD_TABLE, GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQUE



DB_DISCONNECT Procedure  23

DB_DISCONNECT Procedure
Disconnects PV-WAVE from an external database.

Usage

DB_DISCONNECT, dbms_id

Input Parameters

dbms_id — The DBMS ID (handle) that was returned by the DB_CONNECT
function.

Keywords

None.

Discussion

Use this function when you:

• are finished importing data from a database and want to end the session and
free the DBMS license seat.

• have accessed data from one database (e.g., mydb) and want to access data
from a different database (e.g., yourdb).

• want to access the same database (e.g., mydb), but using a different login
string.

Example

In this example, the DB_DISCONNECT procedure is used to disconnect from the
ORACLE database.

oracle_id = DB_CONNECT(’ORACLE’,’scott/tiger’)

emp = DB_SQL(oracle_id, ’SELECT * from emp’)

DB_DISCONNECT, oracle_id

INFO, /Structure, emp

See Also

DB_SQL, DB_CONNECT

See the following related functions in the PV-WAVE Reference:

BUILD_TABLE, GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQUE



24  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

NULL_PROCESSOR Function
Facilitates the use of the Null_Info keyword for the DB_SQL function by extract-
ing the list of rows containing missing for one or more columns.

Usage

table =
NULL_PROCESSOR(null_info_object,[‘col1’,’col2’,…,’coln’],Comp=comp)

Input Parameters

null_info_object — The object returned by the Null_Info keyword in the DB_SQL
call.

coli — The list of column names.

Keywords

Comp=comp — Produces the complement to the result, that is, the result contains
a list of rows with missing data. comp contains a list of rows with no missing data.

Discussion

Assuming the following use of the DB_SQL Null_Info keyword:

table=db_sql(db_connect('oracle', 'user_id/user_pw'), 'select *
from blanktest', null_info=foo)

where blanktest contains the data given below, which has missing data for
ID_NO in the 4th, 9th, and 11th rows and missing data for ANIMAL_NAME in the
3rd, 8th, and 10th rows.



NULL_PROCESSOR Function  25

NOTE Note: NULL indicates a NULL value in the corresponding database field.

Then,

jjj=NULL_PROCESSOR(foo,['ID_NO','ANIMAL_NAME'],Comp=comp)

produces the results

jjj = 2       3       7       8       9      10

comp = 0           1           4           5           6

This output can be utilized as in the following examples.

Table2 = table(comp)

produces a table with only rows and no missing values or as in the table given
above.

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

3 NULL

NULL harry

5 KC

6 skip

7 sparky

8 NULL

NULL sneakers

10 NULL

NULL harvey

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

5 KC

6 skip

7 sparky



26  Chapter 2: Reference PV-WAVE:Database Connection User’s Guide

Then,

Table3=table(jjj)

produces a table containing only rows with missing data (note how zeros have been
substituted for values of ID_NO that are missing).

Instead, if you want only the locations where one field is missing, a different db_sql
call, jjj=foopro(foo,['ID_NO'],Comp=comp), returns an array, jjj, with the rows
where ID_NO is missing (3       8      10).

Remember that rows are counted beginning with 0.

ID_NO ANIMAL_ NAME

3

0 harry

8

0 sneakers

10

0 harvey


	PV-WAVE Database Connection User's Guide
	Table of Contents
	Preface
	Intended Audience
	Typographical Conventions
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services


	1- Importing from a Database
	Introduction
	Use the SQL Syntax You Already Know
	Import Any Data Type
	Database Access is Convenient
	What You Need to Know to Use these Functions

	Connecting to a Database
	Database Connection Example

	Querying the Database
	Example 1: Importing an Entire Table
	Example 2: Importing and Sorting Part of a Table
	Example 3: Importing and Sorting Table Summary Data
	Example 4: Importing Data from Multiple Tables
	Example 5: Importing NULL Values
	Connecting to a Database from a PV-WAVE Routine

	Controlling Rowset Size

	2 - Reference
	Summary of Database Routines
	DB_CONNECT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	See Also

	DB_GET_BINARY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion

	DB_SQL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

	DB_DISCONNECT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	NULL_PROCESSOR Function
	Usage
	Input Parameters
	Keywords
	Discussion



